1,535 research outputs found

    Modelamiento y especificación de sistemas distribuidos y temporizados

    Get PDF
    El aumento en la complejidad de los sistemas distribuidos y temporizados hace que ellos sean muy difícil de modelary especificar correctamente. Diferentes métodos formales son útiles para el proceso de modelado y especificaciónde estos tipos de sistemas. Los Autómatas Temporizados (AT) y los Autómatas Temporizados Distribuidos (ATD)son los modelos formales más utilizados para modelar sistemas de tiempo real y distribuidos. Lamentablemente losalgoritmos existentes para calcular la inclusión y complementación de sus lenguajes son indecidible. En este artículo,presentaremos las lógicas (Lógica Temporalizada de Eventos Distribuidos, Lógica Temporizados de Memorizaciónde Eventos) y los autómatas (Autómatas de Eventos Distribuidos, Autómatas de Memorización de Eventos),totalmente decidibles. Estos métodos fueron diseñados para modelar, especificar, estudiar el comportamiento y enespecial verificar el buen funcionamiento de los sistemas de tiempo real y distribuidos.Increasing complexity in distributed and real-time systems makes them very hard to model and specify correctly. Different formal methods are useful for the process of modeling and specification of these kinds of systems. Timed Automata (TA) and Distributed Timed Automata (DTA) are the dominant models of distributed and realtime systems. Unfortunately, their language inclusion and complementation are undecidable. In this paper, we will present logics and automata (Distributed Event Clock Automata (DECA), Memory Event Clock Automata (RMECA), Distributed Event Clock Temporal Logic (DECTL), Memory Event Clock Temporal Logic (RMECTL) fully decidable and they were designed to modeling, specifying and studying the behavior and in particular verifying the correct operation of distributed and real-time systems

    Geometry of Discrete Quantum Computing

    Full text link
    Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2^{n} infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields Fp^2 (based on primes p congruent to 3 mod{4}) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space CP{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p+1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to DCP{2^{n}-1}, the discrete analog of the complex projective space, which has p^{2^{n}-1} (p-1)\prod_{k=1}^{n-1} (p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field Fp^2 have p^{n} (p-1)^{n} unentangled states (the product of the tally for a single qubit) with purity 1, and they have p^{n+1}(p-1)(p+1)^{n-1} maximally entangled states with purity zero.Comment: 24 page

    Simulating chemistry using quantum computers

    Get PDF
    The difficulty of simulating quantum systems, well-known to quantum chemists, prompted the idea of quantum computation. One can avoid the steep scaling associated with the exact simulation of increasingly large quantum systems on conventional computers, by mapping the quantum system to another, more controllable one. In this review, we discuss to what extent the ideas in quantum computation, now a well-established field, have been applied to chemical problems. We describe algorithms that achieve significant advantages for the electronic-structure problem, the simulation of chemical dynamics, protein folding, and other tasks. Although theory is still ahead of experiment, we outline recent advances that have led to the first chemical calculations on small quantum information processors.Comment: 27 pages. Submitted to Ann. Rev. Phys. Che

    Merger and Acquisition Due Diligence Part II- The Devil in the Details

    Get PDF
    Our prior scholarship examined the legal and technical challenges involved in modern Merger & Acquisition ( M&A ) due diligence practices associated with transactions ( Deals ), given recent but steady advances in technology and related increases in sophistication seen in Deal participants-primarily the organizations or assets targeted (the Targets ) as part of the Deal, and the organizations that pursued and/or resulted from the Deal (the Acquirers ). We then proposed a framework addressing five particular verticals of interest and concern: data privacy ( DP ), information security ( IS ), e-Discovery, information governance ( IG ), and the due diligence and record keeping associated with the Deal itself ( Deal Information ) (collectively, the Framework )

    Validation of the AASLD recommendations for Classification of Oesophageal Varices in Clinical Practice

    Get PDF
    Background & Aims The American Association for the Study of Liver Diseases recommends the use of a 2‐grade classification system (small and large) to describe the size of oesophageal varices (OV). Data on observer agreement (OA) on this system are currently lacking. We aimed to evaluate this classification and compare it to the widely used 3‐grade classification (grade 1 ‘small’, grade 2 ‘medium’, grade 3 ‘large’) among operators of variable experience. Methods High‐definition video recordings of 100 patients with cirrhosis were prospectively collected using standardised criteria. Nine observers of variable experience performed independent evaluations of the videos in random order. OV were scored using both systems. All assessments were repeated a year later by the same observers to assess intra‐observer agreement. Results Interobserver agreement (all observers) using the 2‐grade and the 3‐grade system was k = 0.71 (95% CI: 0.64‐0.78) and k = 0.73 (95% CI: 0.66‐0.79) respectively. When using the 2‐grade system, intra‐observer agreement between hepatologists (n = 3), luminal gastroenterologists (n = 3) and trainee gastroenterologists (n = 3) was k = 0.89 (95% CI: 0.86‐0.91), k = 0.72 (95% CI: 0.67‐0.77), and k = 0.74 (95% CI: 0.67‐0.8) respectively. With the 3‐grade system; intra‐observer agreement between the same three subgroups were k = 0.9 (95% CI: 0.87‐0.92), k = 0.73 (95% CI: 0.68‐0.78), k = 0.77 (95% CI: 0.71‐0.82) respectively. Conclusions There was no difference in OA between the 2‐grade and 3‐grade classification systems. Hepatologists had significantly higher levels of consistency in grading OV. This may have implications to create alternative training models for residents and fellows in the recognition and grading of OV

    The influence of genetic structure on phenotypic diversity in the Australian mango (Mangifera indica) gene pool

    Get PDF
    Genomic selection is a promising breeding technique for tree crops to accelerate the development of new cultivars. However, factors such as genetic structure can create spurious associations between genotype and phenotype due to the shared history between populations with different trait values. Genetic structure can therefore reduce the accuracy of the genotype to phenotype map, a fundamental requirement of genomic selection models. Here, we employed 272 single nucleotide polymorphisms from 208 Mangifera indica accessions to explore whether the genetic structure of the Australian mango gene pool explained variation in trunk circumference, fruit blush colour and intensity. Multiple population genetic analyses indicate the presence of four genetic clusters and show that the most genetically differentiated cluster contains accessions imported from Southeast Asia (mainly those from Thailand). We find that genetic structure was strongly associated with three traits: trunk circumference, fruit blush colour and intensity in M. indica. This suggests that the history of these accessions could drive spurious associations between loci and key mango phenotypes in the Australian mango gene pool. Incorporating such genetic structure in associations between genotype and phenotype can improve the accuracy of genomic selection, which can assist the future development of new cultivars. © 2022, The Author(s)

    The influence of genetic structure on phenotypic diversity in the Australian mango (Mangifera indica) gene pool

    Get PDF
    Genomic selection is a promising breeding technique for tree crops to accelerate the development of new cultivars. However, factors such as genetic structure can create spurious associations between genotype and phenotype due to the shared history between populations with different trait values. Genetic structure can therefore reduce the accuracy of the genotype to phenotype map, a fundamental requirement of genomic selection models. Here, we employed 272 single nucleotide polymorphisms from 208 Mangifera indica accessions to explore whether the genetic structure of the Australian mango gene pool explained variation in trunk circumference, fruit blush colour and intensity. Multiple population genetic analyses indicate the presence of four genetic clusters and show that the most genetically differentiated cluster contains accessions imported from Southeast Asia (mainly those from Thailand). We find that genetic structure was strongly associated with three traits: trunk circumference, fruit blush colour and intensity in M. indica. This suggests that the history of these accessions could drive spurious associations between loci and key mango phenotypes in the Australian mango gene pool. Incorporating such genetic structure in associations between genotype and phenotype can improve the accuracy of genomic selection, which can assist the future development of new cultivars. © 2022, The Author(s)

    The impact of secondary forest regeneration on ground-dwelling ant communities in the Tropical Andes

    Get PDF
    Natural regeneration of abandoned farmland provides an important opportunity to contribute to global reforestation targets, including the Bonn Challenge. Of particular importance are the montane tropics, where a long history of farming, frequently on marginal soils, has rendered many ecosystems highly degraded and hotspots of extinction risk. Ants play crucial roles in ecosystem functioning, and a key question is how time since abandonment and elevation (and inherent temperature gradients therein) affect patterns of ant recovery within secondary forest systems. Focusing on the Colombian Andes across a 1300 m altitudinal gradient and secondary forest (2–30 years) recovering on abandoned cattle pastures, we find that over time ant community composition and species richness recovered towards that of primary forest. However, these relationships are strongly dependent on elevation with the more open and warmer pasturelands supporting more ants than either primary or secondary forest at a particular elevation. The loss of species richness and change in species composition with elevation is less severe in pasture than forests, suggesting that conditions within pasture and its remaining scattered trees, hedgerows and forest fragments, are more favourable for some species, which are likely in or near thermal debt. Promoting and protecting natural regenerating forests over the long term in the montane tropics will likely offer significant potential for returning ant communities towards primary forest levels

    Role of carbonate burial in Blue Carbon budgets

    Get PDF
    Calcium carbonates (CaCO3) often accumulate in mangrove and seagrass sediments. As CaCO3 production emits CO2, there is concern that this may partially offset the role of Blue Carbon ecosystems as CO2sinks through the burial of organic carbon (Corg). A global collection of data on inorganic carbon burial rates (Cinorg, 12% of CaCO3 mass) revealed global rates of 0.8 TgCinorg yr−1 and 15–62 TgCinorg yr−1 in mangrove and seagrass ecosystems, respectively. In seagrass, CaCO3burial may correspond to an offset of 30% of the net CO2 sequestration. However, a mass balance assessment highlights that the Cinorg burial is mainly supported by inputs from adjacent ecosystems rather than by local calcification, and that Blue Carbon ecosystems are sites of net CaCO3 dissolution. Hence, CaCO3 burial in Blue Carbon ecosystems contribute to seabed elevation and therefore buffers sea-level rise, without undermining their role as CO2 sinks

    Report on eighth WHO meeting on development of influenza vaccines that induce broadly protective and long-lasting immune responses: Chicago, USA, 23-24 August 2016

    Get PDF
    In August 2016, the World Health Organization (WHO) convened the "Eighth meeting on development of influenza vaccines that induce broadly protective and long-lasting immune responses" to discuss the regulatory requirements and pathway
    corecore